Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Endocrine ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647981

RESUMO

BACKGROUND: Semaglutide is a relatively new anti-hyperglycemic agent that was shown to carry cardioprotective potentials. However, the exact effects of semaglutide on diabetic cardiomyopathy (DCM) and their underlining mechanism remain unclear. This study aimed to evaluate the effects of semaglutide on myocardium injury and cardiac function in DCM mice and its potential mechanisms, with emphasis on its effects on Cx43 and electrophysiological remodeling. METHODS: C57BL/6 mice were randomly divided into four groups: control group, semaglutide group, diabetes group, and diabetes + semaglutide treatment group. Type 1 diabetes were induced by intraperitoneal injection of streptozotocin. Mice in the semaglutide intervention group were injected subcutaneously with semaglutide (0.15 mg/kg) every week for 8 weeks. The blood glucose, cardiac function, oxidative stress markers, apoptosis, expression of Sirt1, AMPK, Cx43, and electrocardiogram of mice in each group were evaluated. RESULTS: Treatment with semaglutide alleviated glucose metabolism disorders and improved cardiac dysfunction in diabetic mice. In addition, semaglutide ameliorated the increase in oxidative stress and apoptosis in diabetic heart. Sirt1/AMPK pathway was activated after semaglutide treatment. Furthermore, diabetic mice showed reduced expression of Cx43 in the myocardium, accompanied by changes in electrocardiogram, including significantly prolonged RR, QRS, QT and QTc interval. Semaglutide treatment restored Cx43 expression and reversed the above-mentioned ECG abnormalities. CONCLUSIONS: Our research results showed that semaglutide protected against oxidative stress and apoptosis in diabetic heart, thereby improving cardiac function and electrophysiological remodelling in DCM mice, which may attribute to activation of Sirt1/AMPK pathway and restore of Cx43 expression.

2.
J Ethnopharmacol ; 324: 117705, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219878

RESUMO

BACKGROUND: Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS: To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1ß were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS: This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION: The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Piroptose , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Aterosclerose/genética , Inflamação/tratamento farmacológico , Colesterol , Macrófagos/metabolismo , Apolipoproteínas E/genética
3.
Bioresour Technol ; 393: 130105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008223

RESUMO

Hydrochars are promising adsorbents in pollutant removal for water treatment. Herein, hydrochloric acid (HCl) co-hydrothermally treated hydrochars were prepared from rice husk biomass at 180 °C via a one-step hydrothermal method. Adsorption behaviors of levofloxacin (LVX) on hydrochars were evaluated. The specific surface area and pore volume of the hydrochar synthesized in 5 mol/L HCl (5H-HC) were almost 17 and 8 times of untreated hydrochar, respectively. The 5H-HC sample exhibited the highest LVX adsorption capability at room temperature (107 mg/g). Thermodynamic experimental results revealed that adsorption was a spontaneous endothermic process. Yan model provided the best description of the breakthrough behavior of LVX in bioretention column, indicating that the adsorption on the samples involved several rate-limiting factors including diffusion and mass transfer. The results show that facile HCl co-hydrothermal carbonization of waste biomass can produce novel hydrochars with high LVX adsorption ability.


Assuntos
Oryza , Ácido Clorídrico , Levofloxacino , Termodinâmica , Adsorção , Carbono
4.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067543

RESUMO

Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Piroptose , Cardiomiopatias Diabéticas/tratamento farmacológico , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Inflamassomos/metabolismo
5.
Mol Cell Biochem ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646951

RESUMO

Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.

6.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37259333

RESUMO

N6-methyladenosine (m6A) plays a significant role as an epigenetic mechanism, which is involved in various cancers' progress via regulating mRNA modification. As a crucial m6A "reader", YTHDF1 is able to alter m6A-modified mRNA and promote the protein translation process in multiple cancers. However, the role of YTHDF1 in lung cancer has not been fully investigated. This study focuses on elucidating the function of YTHDF1 in the development of lung cancer and its underlying mechanism. We demonstrated that YTHDF1 was highly expressed in lung carcinoma progression; then, the loss of function experiments in lung cell lines confirmed that knockdown of YTHDF1 suppressed cell proliferation, migration and invasion and induced ferroptosis of lung cancer cells. Further functional assays showed that ferritin (FTH) was identified as the key target of YTHDF1 in lung cancer cells. Furthermore, the overexpression of ferritin in YTHDF1-depleted cells partially restored lung cancer cell suppression. Collectively, our data suggested that the upregulation of YTHDF1 promotes lung cancer carcinogenesis by accelerating ferritin translation in an m6A-dependent manner. We hope that our findings may provide a new target for lung cancer diagnosis and treatment.

7.
J Ethnopharmacol ; 317: 116766, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343655

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Zhenzhu TiaoZhi (FTZ), a Chinese medicinal decoction, has continuously been used to treat metabolic syndrome. Atherosclerosis is the main pathological basis of cardiovascular disease. The N6 methyladenosine (m6A) modification is a highly dynamic and reversible process involving a variety of important biological processes. AIM OF THE STUDY: Here, we investigated the therapeutic effects and mechanism of FTZ in diabetes-accelerated atherosclerosis. MATERIALS AND METHODS: Doppler ultrasonography was used to examine the carotid intima-media thickness and plaque area in diabetic atherosclerosis patients. HFD mice were injected with streptozotocin to induce diabetes. HE and Oil red O staining were used to assess the effect of FTZ on lipid deposition. HUVECs were induced with HG/ox-LDL as a model of diabetic atherosclerosis. Furthermore, application of m6A methylation level kit, qRT-PCR, Western blot, tunel staining, reactive oxygen species staining and mPTP staining were performed to analyze the detailed mechanism. RESULTS: Clinical trials of FTZ have shown obvious effect of lowering blood glucose and blood lipids. These effects were reversed after FTZ intervention. Compared with the control, lipid deposition decreased significantly after FTZ administration. FTZ reduced endothelial cell apoptosis. At the same time, we found that FTZ reversed the increase of methylation reader YTHDF2 caused by ox-LDL treatment. Subsequently, we discovered that YTHDF2 degraded SIRT3 mRNA, leading to endothelial cell apoptosis and oxidative stress. CONCLUSION: FTZ attenuated diabetes-accelerated atherosclerosis by decreasing blood glucose and serum lipids levels, and increased endothelial cell antioxidant capacity, inhibited endothelial cell apoptosis via inhibiting YTHDF2-mediated m6A modification of SIRT3 mRNA, which reduced mRNA degradation.


Assuntos
Aterosclerose , Diabetes Mellitus , Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , RNA Mensageiro , Glicemia , Espessura Intima-Media Carotídea , Aterosclerose/genética , Lipídeos , Fatores de Transcrição
8.
Biomed Pharmacother ; 164: 114919, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302318

RESUMO

Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Doenças Metabólicas , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Metabolismo dos Lipídeos , Dinâmica Mitocondrial , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Miócitos Cardíacos , Doenças Metabólicas/tratamento farmacológico
9.
Methods Mol Biol ; 2660: 61-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191790

RESUMO

The 3D-autologous culture method (3D-ACM) for patient-derived cancer samples utilizes a patient's own body fluid or serum to prepare a 3D scaffold and for the culture medium. 3D-ACM enables tumor cells and/or tissues from an individual patient to proliferate in vitro, in a microenvironment that is very similar to their original, in vivo surroundings. The purpose is to maximally preserve in culture the native biological properties of a tumor. This technique has been employed for two models: (1) cells isolated from malignant ascites or pleural effusions (body fluids) and (2) solid tissues from biopsies or surgically removed cancers. Here we describe the detailed procedures for these 3D-ACM models.


Assuntos
Neoplasias , Derrame Pleural , Humanos , Neoplasias/patologia , Medicina de Precisão , Derrame Pleural/patologia , Ascite , Microambiente Tumoral
10.
Pediatr Transplant ; 27(1): e14379, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36039686

RESUMO

BACKGROUND: This study aims to establish multiple ML models and compare their performance in predicting tacrolimus concentration for infant patients who received LDLT within 3 months after transplantation. METHODS: Retrospectively collected basic information and relevant biochemical indicators of included infant patients. CMIA was used to determine tacrolimus C0 . PCR was used to determine the donors' and recipients' CYP3A5 genotypes. Multivariate stepwise regression analysis and stepwise elimination covariates were used for covariates selection. Thirteen machine learning algorithms were applied for the development of prediction models. APE, the ratio of the APE ≤3 ng ml-1 and ideal rate (the proportion of the predicted value with a relative error of 30% or less) were used to evaluate the predictive performance of the model. RESULTS: A total of 163 infant patients were included in this study. In the case of the optimal combination of covariates, the Ridge model had the lowest APE, 2.01 (0.85, 3.35 ng ml-1 ). The highest ratio of the APE ≤3 ng ml-1 was the LAR model (71.77%). And the Ridge model showed the highest ideal rate (55.05%). For the Ridge model, GRWR was the most important predictor. CONCLUSIONS: Compared with other ML models, the Ridge model had good predictive performance and potential clinical application.


Assuntos
Hominidae , Transplante de Fígado , Humanos , Lactente , Animais , Tacrolimo/uso terapêutico , Doadores Vivos , Imunossupressores/uso terapêutico , Estudos Retrospectivos , Citocromo P-450 CYP3A/genética , Genótipo
11.
Bioresour Bioprocess ; 10(1): 37, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647615

RESUMO

Proteolysis is the rate-limiting step in the mineralization of organic nitrogen into ammonium (NH4+) and thereby the ammonia (NH3) released during the composting. However, the dynamics of bacterial proteolytic communities related to NH3 emissions during the composting systems are mostly unknown. This study aimed to examine and compare the effects of hyperthermophilic pretreatment composting (HPC) and traditional composting (TC) methods on (i) the difference of NH3 loss and nitrogenous compounds; (ii) the dynamics of the proteolytic bacterial community involved in the proteolysis and (iii) the correlation between the proteolytic bacterial community, biophysiochemical characteristics and NH3 loss. Results revealed that the HPC decreased NH3 loss by 42% as compared to TC during 60-day composting period. This was accompanied with an inhibitory effect on protease activity in the HPC where the relative abundances of the proteolytic bacteria (Bacillus megaterium and Staphylococcus cohnii) were reduced significantly as compared to TC. Partial least-squares path modeling suggested that various physicochemical properties such as higher temperature as well as lower C/N ratio during composting played a dominant role in affecting the abundance of proteolytic bacteria, which may have been an important factor contributing to the lower NH3 loss in HPC. All these findings lead us to conclude that the HPC can significantly reduce NH3 loss by inhibiting the proteolytic bacteria and protease activity responsible for NH3 release.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36387353

RESUMO

Background: Fu Fang Zhen Zhu Tiao Zhi (FTZ) is a traditional Chinese herbal prescription widely used to treat dyslipidemia, metabolic diseases, and diabetic coronary disorders. Cardiomyocyte death and loss of regenerative ability cause cardiac dysfunction and heart failure. FTZ can effectively treat diabetic cardiomyopathy and macrovascular diseases; however, the mechanism behind the phenomenon is still unclear. Here, we determined the mechanism of action of FTZ in treating myocardial infarction. Methods: Male C57BL/6 mice were treated with 2.4 or 1.2 g/kg FTZ, or administered saline by oral gavage daily for four weeks, and a 24-hour ligation was administered to the artery. Echocardiography was used to evaluate cardiac function. Hematoxylin and eosin and Evans blue/triphenyltetrazolium chloride staining were carried out by staining the cardiac tissue, used to evaluate cardiac function and infarct size. Using western blotting and reverse transcriptase-polymerase chain reaction, we determined the relative levels of NOD-like receptor protein (NLRP) 3, ASC, cleaved caspase-l (C-Caspase-1), GSDMD, and GSDMD-N. TUNEL, immunohistochemical, and immunofluorescence staining were used to determine cell death and NLRP3 expression. An enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin (IL)-1ß and IL-18. Results: FTZ reduced ischemia-induced cardiomyocyte cell death in vivo and H2O2-induced cell death in vitro by maintaining cardiac architecture and restoring cardiac function. FTZ decreased the NLRP3 expression and inhibited pyroptosis-correlated genes, including NLRP3, ASC, GSDMD, C-Caspase-1, and GSDMD-N. NLRP3 overexpression impaired the efficacy of FTZ by inducing pyroptosis. Conclusion: FTZ could preserve cardiac function resulting from ischemic insult by inhibiting pyroptosis, which was partially reversed by NLRP3 overexpression, indicating that NLRP3 could be a potential target of FTZ in treating myocardial infarction.

13.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144743

RESUMO

Natural coumarins contribute to the aroma of licorice, and they are often used as a flavoring and stabilizing agents. However, coumarins usage in food has been banned by various countries due to its toxic effect. In this study, a strain of HSM-C2 that can biodegrade coumarin with high efficiency was isolated from soil and identified as Pseudomonas putida through performing 16S rDNA sequence analysis. The HSM-C2 catalyzed the biodegradation up to 99.83% of 1 mg/mL coumarin within 24 h under optimal culture conditions, such as 30 °C and pH 7, which highlights the strong coumarin biodegrading potential of this strain. The product, such as dihydrocoumarin, generated after the biodegradation of coumarin was identified by performing GC-MS analysis. The present study provides a theoretical basis and microbial resource for further research on coumarin biodegradation.


Assuntos
Pseudomonas putida , Biodegradação Ambiental , Cumarínicos/metabolismo , DNA Ribossômico/metabolismo , Excipientes , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Solo , Microbiologia do Solo
14.
Genes (Basel) ; 13(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893075

RESUMO

Atherosclerosis is a chronic systemic inflammatory disease that causes severe cardiovascular events. B cell lymphoma 2-associated athanogene (BAG3) was proven to participate in the regulation of tumor angiogenesis, neurodegenerative diseases, and cardiac diseases, but its role in atherosclerosis remains unclear. Here, we aim to investigate the role of BAG3 in atherosclerosis and elucidate the potential molecular mechanism. In this study, ApoE-/- mice were given a tail-vein injection of BAG3-overexpressing lentivirus and fed a 12-week high-fat diet (HFD) to investigate the role of BAG3 in atherosclerosis. The overexpression of BAG3 reduced plaque areas and improved atherosclerosis in ApoE-/- mice. Our research proves that BAG3 promotes autophagy in vitro, contributing to the suppression of EndMT in human umbilical vein endothelial cells (HUVECs). Mechanically, autophagy activation is mediated by BAG3 via the interaction between BAG3 and its chaperones HSP70 and HSPB8. In conclusion, BAG3 facilitates autophagy activation via the formation of the chaperone-assisted selective autophagy (CASA) complex interacting with HSP70 and HSPB8, leading to the inhibition of EndMT during the progression of atherosclerosis and indicating that BAG3 is a potential therapeutic target for atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Aterosclerose , Transição Epitelial-Mesenquimal , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Aterosclerose/genética , Autofagia/genética , Proteínas de Choque Térmico HSP70 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Knockout para ApoE , Chaperonas Moleculares/metabolismo
15.
Cell Death Discov ; 8(1): 258, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538059

RESUMO

Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks specific treatment. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been suggested to contribute to the pathogenesis of cardiovascular diseases. However, whether cGAS-STING is involved in the development of DCM has not been established. Our study aimed to determine the role of cGAS-STING in the initiation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome-induced cardiac pyroptosis and chronic inflammation during the pathogenesis of DCM. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically knock down myocardial STING. After four weeks, mice with myocardium-specific knockdown of STING received injections of streptozotocin (STZ; 50 mg/kg) and a high-fat diet to induce diabetes. Measurements included echocardiography, immunohistochemical analyses, wheat germ agglutinin (WGA) staining, and western blotting. Here, we showed that the cGAS-STING signaling pathway was activated in diabetic hearts, which was indicated by the increased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon (IFN) regulatory factor 3 (IRF3), leading to the activation of the NLRP3 inflammasome in the hearts of diabetic mice and proinflammatory cytokine release into serum. Moreover, STING knockdown via adeno-associated virus-9 (AAV9) in diabetic mouse heart alleviated cardiac pyroptosis and the inflammatory response, prevented diabetes-induced hypertrophy, and restored cardiac function. Mechanistically, we showed that palmitic acid (PA)-induced lipotoxicity impairs mitochondrial homeostasis, producing excessive mitochondrial reactive oxygen species (mtROS), which results in oxidative damage to mitochondrial DNA (mtDNA) and its release into the cytoplasm while switching on cGAS-STING-mediated pyroptosis in cardiomyocytes, thereby worsening the progression of diabetic cardiomyopathy. Our study demonstrated that activation of the cGAS-STING pathway caused by mitochondrial oxidative damage and mtDNA escape induced by free fatty acids promoted pyroptosis and proinflammatory responses in cardiomyocytes in a NLRP3 inflammasome-dependent manner, thus promoting myocardial hypertrophy during the progression of DCM.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35497919

RESUMO

Background: Fu fang Zhen Zhu Tiao Zhi (FTZ) is a patented preparation of Chinese herbal medicine that has been used as a natural medicine to treat several chronic diseases including cardiovascular disease. However, its effects on cardiac fibrosis remain unclear. Therefore, this study was designed to investigate the effects and potential mechanisms of FTZ in treating cardiac fibrosis. Methods: FTZ was administered to mice by oral gavage daily at a dosage of 1.2 g/kg or 2.4 g/kg of body weight for 7 weeks after a transverse aorta constriction (TAC) surgery. Doppler echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were used to assess the effect of FTZ on the cardiac structure and function of mice that had undergone TAC. EdU and wound-healing assays were performed to measure the proliferative and migratory abilities of cardiac fibroblasts. Western blotting and qRT-PCR were used to determine the expression of TGFß1, Col1A2, Col3, and α-SMA proteins and mRNA levels. Results: FTZ treatment reduced collagen synthesis, attenuated cardiac fibrosis, and improved cardiac function in mice subjected to TAC. Moreover, FTZ treatment prevented the proliferation and migration of cardiac fibroblasts and reduced Ang-II-induced collagen synthesis. Furthermore, FTZ downregulated the expression of TGFß1, p-smad2, and p-smad3 and inhibited the TGFß1-Smad2/3 pathway in the setting of cardiac fibrosis. Conclusion: FTZ alleviated the proliferation and migration of cardiac fibroblasts and suppressed collagen synthesis via the TGFß1-Smad2/3 pathway during the progression of cardiac fibrosis. These findings indicated the therapeutic potential of FTZ in treating cardiac fibrosis.

17.
J Ethnopharmacol ; 293: 115261, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447198

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Zhenzhu Tiaozhi (FTZ) is a traditional Chinese herbal prescription that has been used to treat dyslipidemia, nonalcoholic fatty liver disease, atherosclerosis, diabetes and its complications in the clinic for almost ten years. Endothelial-mesenchymal transition (EndMT) is the key driver of atherosclerosis. However, the effects of FTZ on endothelial dysfunction and EndMT remain unknown. AIM OF THE STUDY: To evaluate the therapeutic effects of FTZ against EndMT and the underlying mechanisms. MATERIALS AND METHODS: An in vivo model of atherosclerosis was established by feeding ApoE-/- mice with a high-fat diet (HFD). The body weight, lipid levels, plaque area, lipid deposition and EndMT were evaluated using standard assays 12 weeks after intragastric administration of FTZ and simvastatin. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate EndMT in vitro. The degree of EndMT was assessed after treating the cells with FTZ or transfection with si-Akt1. The expression levels of genes involved in EndMT were quantified by real-time PCR or western blotting. RESULTS: FTZ ameliorated dyslipidemia and endothelial dysfunction in the atherosclerotic mice. In addition, FTZ reduced body weight and the total cholesterol, triglycerides and low-density lipoprotein levels, and increased that of high-density lipoproteins. FTZ also upregulated the expression of endothelial markers (CD31 and VE-cadherin) and decreased that of mesenchymal markers (ɑ-SMA and FSP1), indicating that it inhibits EndMT. Knocking down Akt1 exacerbated EndMT and reversed the therapeutic effect of FTZ. CONCLUSION: FTZ delayed atherosclerosis by inhibiting EndMT via the Akt1/ß-catenin pathway.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , beta Catenina , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Peso Corporal , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas LDL , Medicina Tradicional Chinesa , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo
18.
Cell Prolif ; 55(4): e13213, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35274781

RESUMO

OBJECTIVES: Acupuncture stimulation has proven to protect dopaminergic neurons from oxidative damage in animal models of Parkinson's disease (PD), but it remains unclear about the in situ information of biochemical components in dopaminergic neurons. Here, we aimed to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in PD mice treated with acupuncture by synchrotron FTIR micro-spectroscopy technique. MATERIALS AND METHODS: About 9-10-week-old C57BL/6 mice were used to establish PD model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg for 5 days). Acupuncture stimulation was performed once a day for 12 days. Behaviour test was determined using the rotarod instrument. Biochemical compositions of dopaminergic neurons in substantia nigra pars compacta were analysed by synchrotron FTIR micro-spectroscopy technique. The number and ultrastructure of dopaminergic neurons were respectively observed by immunofluorescence and transmission electron microscopy (TEM). RESULTS: We found that the number and protein expression of dopaminergic neurons in MPTP-treated mice were reduced by about half, while that in the mice treated by acupuncture were significantly restored. Acupuncture treatment also restored the motor ability of PD mice. The results of single cell imaging with synchrotron FTIR micro-spectroscopy technique showed that the proportion of lipid in MPTP treated mice increased significantly. Especially the ratio of CH2 asymmetric stretching and CH3 asymmetric stretching increased significantly, suggesting that MPTP induced lipid peroxidation damage of dopaminergic neurons. It is also supported by the result of TEM, such as mitochondrial swelling or atrophy, loss of mitochondrial crests and mitochondrial vacuolization. Compared with MPTP treated mice, the proportion of lipid in acupuncture treated mice decreased and the mitochondrial structure was restored. CONCLUSIONS: Acupuncture can inhibit the level of lipid peroxides in dopaminergic neurons and protect neurons from oxidative damage. The study provides a promising method for in situ analysis of biochemical compositions in PD mice and reveals the mechanism of acupuncture in treating neurodegenerative diseases.


Assuntos
Terapia por Acupuntura , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Peroxidação de Lipídeos , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Substância Negra/metabolismo
19.
Pharmacol Res ; 177: 106124, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149188

RESUMO

Cardiac fibrosis is a pathological process of multiple cardiovascular diseases, which may lead to heart failure. Studies have shown that microRNAs (miRNAs) play critical roles in regulating mitophagy and cardiac fibrosis. We found that miR-24-3p expression was significantly downregulated in transverse aortic constriction (TAC) mice and cardiac fibroblasts (CFs) treated with Ang Ⅱ. We also found that, apart from improving cardiac structure and function, forced expression of miR-24-3p not only reduced the levels of collagen and α-SMA but also inhibited proliferation and migration of CFs. Next, our research proved that miR-24-3p suppressed the progression of mitophagy, autophagic flux, and the levels of mitophagy-related proteins in cardiac fibrosis models. Further analysis showed that PHB2 was a direct target of miR-24-3p. Finally, experiments showed that the knockdown of PHB2 reversed Ang Ⅱ-induced fibrosis in CFs. The results of our study suggests that increased expression of miR-24-3p contributes to the reduction of cardiac fibrosis and that it might be targeted therapeutically to alleviate cardiac fibrosis.


Assuntos
MicroRNAs , Proibitinas/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitofagia , Miocárdio/metabolismo
20.
Biomed Pharmacother ; 148: 112696, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35183007

RESUMO

BACKGROUND: Despite the fact that the initial hypertrophic response to ventricular pressure overload is thought to be compensatory, prolonged stress often leads to heart failure. Previous studies have shown that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula is beneficial for the treatment of dyslipidemia and hyperglycemia. However, the effects of FTZ on cardiac hypertrophy remain unclear. OBJECTIVE: The aim of this study is to evaluate the protective effects of FTZ on cardiac hypertrophy and determine the underlying mechanisms. METHODS: TAC was utilized to establish a cardiac hypertrophy animal model, and FTZ was given via gavage for four weeks. Next, echocardiographic measurements were made. The morphology of mouse cardiomyocytes was examined using H&E and WGA staining. In vitro, the neonatal cardiomyocytes were stimulated with angiotensin Ⅱ (Ang Ⅱ). In addition to measuring the size of cardiomyocytes, qRT-PCR and western blotting were conducted to measure cardiac stress markers and pathway. RESULTS: According to our findings, FTZ alleviated cardiac hypertrophy in mice and cell models. Furthermore, expression of miR-214 was down-regulated following FTZ, whereas the effect of FTZ therapy was reversed using miR-214 transfection. Furthermore, the expression of Sirtuin 3 (SIRT3) was decreased in Ang Ⅱ-induced oxidative damage, which was associated with a reduction in SOD-1, GPX1, and HO-1 and an increase in MDA, while SIRT3 expression was restored following FTZ treatment. CONCLUSIONS: Collectively, these findings indicate that FTZ is a protective factor for cardiac hypertrophy due to its regulation of the miR-214-SIRT3 axis, which suggests that FTZ may be a therapeutic target for cardiac hypertrophy.


Assuntos
MicroRNAs , Sirtuína 3 , Angiotensina II/metabolismo , Animais , Cardiomegalia/tratamento farmacológico , Medicamentos de Ervas Chinesas , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos , Estresse Oxidativo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...